$0.40 \times 0.16 \times 0.14 \text{ mm}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(2,4-dibromo-6-formylphenolato- $\kappa^2 N, N'$)zinc(II)

Xian-Ming Chen,^a Shu-Hua Zhang,^b* Li-Xia Jin,^b Zheng Liu^b and Yang Yan^a

^aYulin Teachers' College, Yulin, Guangxi 537000, People's Republic of China, and ^bKey Laboratory of Non-Ferrous Metal Materials and Processing Technology, Department of Materials and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin 541004, People's Republic of China Correspondence e-mail: zsh720108@21cn.com

Received 6 April 2007; accepted 12 April 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.041; wR factor = 0.127; data-to-parameter ratio = 18.5.

In the title compound, $[Zn(C_7H_3Br_2O_2)_2(H_2O)_2]$, the Zn^{II} atom is six-coordinated in a slightly distorted octahedral coordination geometry by four O atoms of two 3,5-dibromo-2-hydroxybenzaldehyde ligands and by two water molecules. The Zn–O bond lengths lie in the range 2.040 (4)–2.121 (4) Å, and the angles subtended at the Zn^{II} atom range from 84.10 (18) to 96.64 (17)°. The molecules are linked into a chain along the *a* axis by O–H···O and O–H···Br hydrogen bonds.

Related literature

A similar cobalt(II) complex also forms a distorted octahedral geometry (Xiao *et al.*, 2002). For related literature, see: Cohen *et al.* (1964); Desiraju (1989); Schmidt (1964); Zordan *et al.* (2005).

Experimental

Crystal data $[Zn(C_7H_3Br_2O_2)_2(H_2O)_2]$ $M_r = 659.23$ Monoclinic, $P2_1/c$ a = 7.6486 (15) Å b = 28.095 (6) Å

c = 8.6716 (17) Å
$\beta = 101.25 (3)^{\circ}$
V = 1827.6 (6) Å ³
Z = 4
Mo $K\alpha$ radiation

μ =	10.1	2 m	nm ⁻¹
T =	293	(2)	Κ

Data collection

Bruker SMART CCD area-detector	12164 measured reflections
diffractometer	4189 independent reflections
Absorption correction: multi-scan	2577 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.066$
$T_{\min} = 0.107, \ T_{\max} = 0.332$	
(expected range = $0.078-0.243$)	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 226 parameters $wR(F^2) = 0.127$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.76$ e Å $^{-3}$ 4189 reflections $\Delta \rho_{min} = -0.77$ e Å $^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1WB\cdots O4^{i}$	0.85	2.01	2.751 (6)	144
$O1W - H1WA \cdots O2^{i}$	0.85	2.31	3.065 (6)	148
$O2W - H2WA \cdots O2^{ii}$	0.85	2.24	2.773 (6)	121
$O2W - H2WB \cdot \cdot \cdot O4^{ii}$	0.85	2.17	2.932 (6)	149
O1W-H1 WA ···Br2 ⁱ	0.85	2.89	3.596 (5)	141
O2W−H2WA···Br2 ⁱⁱ	0.85	2.81	3.637 (5)	166
$O2W - H2WB \cdots Br4^{ii}$	0.85	2.84	3.509 (5)	137

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXTL*.

We acknowledge financial support by the Key Laboratory of Non-Ferrous Metal Materials and New Processing Technology, Ministry of Education, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2359).

References

- Bruker (2001). SAINT (Version 6.45) and SMART (Version 5.0). Bruker AXS Inc, Madison, Wisconsin, USA.
- Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013.
- Desiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids. Amsterdam: Elsevier.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014-2021.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xiao, Y., Lan, C. L., Zhang, S. H. & Jiang, Y. M. (2002). J. Guangxi Normal Univ. 20, 81–84. (In Chinese.)
- Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979–5989.

supplementary materials

Acta Cryst. (2007). E63, m1321 [doi:10.1107/S1600536807018259]

Diaquabis(2,4-dibromo-6-formylphenolato- $\kappa^2 N, N'$)zinc(II)

X.-M. Chen, S.-H. Zhang, L.-X. Jin, Z. Liu and Y. Yan

Comment

Interest in packing arrangements of halogenated compounds goes back many years to what Schmidt (1964) called the "chloro effect",

wherein the presence of chloro substituents on aromatic compounds frequently results in stacking arrangements with a short (*ca* 4 Å) crystallographic axis (Cohen *et al.*, 1964; Zordan *et al.*, 2005; Desiraju, 1989). We report here the crystal structure of the title mononuclear zinc(II) complex, $Zn(L)_2(H_2O)_2$ (I), where LH is 3,5-dibromo-2-hydroxy-benzaldehyde, a dibrominated ligand with two Br atoms accessible at the periphery of each ligand.

The asymmetric unit of (I) contains one unique Zn^{II} centre, two independent L^{-} ligands and two coordinated water molecules (Fig. 1). The Zn^{II} atom is coordinated by four O atoms from two L^{-} ligands and two O atoms from two water molecules, forming slightly distorted octahedral geometry (Table 1). The L^{-} ligand is present in the chelating bidentate mode.

The molecules are linked into a chain along the *a* axis by O—H…O and O—H…Br hydrogen bonds (Table 2).

Experimental

A solution of taurine (2 mmol, 0.253 g) and caustic potash (2 mmol, 0.112 g) in distilled water (10 ml) was slowly added to a solution of 3,5-dibromo- 2-hydroxy-benzaldehyde (2 mmol, 0.560 g) in ethanol (10 ml). The mixture was stirred for 30 min at room temperature, then the solution was slowly added to a solution of zinc nitrate (1 mmol, 0.297 g) in distilled water (10 ml). The mixture was stirred and refluxed for 4 h at room temperature. Colourless needle-shaped single-crystal of (I) were obtained by slow evaporation at room temperature (yield 68%, based on zinc).

Refinement

H atoms of the water molecule were located in a difference Fourier map. The O—H distances were normalized to 0.85 Å and the H atoms were allowed to ride during subsequent refinement, with $U_{iso}(H) = 1.5 U_{eq}(O)$.

All other H atoms were positioned geometrically and were treated as riding atoms, with C–H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. For clarity, all but water H atoms have been omitted.

Fig. 2. The crystal packing of (I). Dashed lines indicate hydrogen bonds. C-bound H atoms have been omitted for clarity.

 $F_{000} = 1248$

 $\theta = 1-27.5^{\circ}$ $\mu = 10.12 \text{ mm}^{-1}$ T = 293 (2) KNeedle, colourless $0.40 \times 0.16 \times 0.14 \text{ mm}$

 $D_{\rm x} = 2.396 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

Cell parameters from 5376 reflections

Diaquabis(2,4-dibromo-6-formylphenolato- $\kappa^2 N$,N')zinc(II)

Crystal data
[Zn(C ₇ H ₃ Br ₂ O ₂) ₂ (H ₂ O) ₂]
$M_r = 659.23$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 7.6486 (15) Å
<i>b</i> = 28.095 (6) Å
<i>c</i> = 8.6716 (17) Å
$\beta = 101.25 \ (3)^{\circ}$
V = 1827.6 (6) Å ³
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	4189 independent reflections
Radiation source: fine-focus sealed tube	2577 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.066$
T = 293(2) K	$\theta_{\text{max}} = 27.6^{\circ}$
φ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.107, \ T_{\max} = 0.332$	$k = -36 \rightarrow 33$
12164 measured reflections	$l = -10 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.127$	$w = 1/[\sigma^2(F_o^2) + (0.0561P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.001$
4189 reflections	$\Delta \rho_{max} = 0.76 \text{ e } \text{\AA}^{-3}$
226 parameters	$\Delta \rho_{min} = -0.77 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.55634 (12)	0.25086 (3)	0.72223 (10)	0.0510 (2)
Br2	0.38278 (11)	0.43461 (3)	0.91144 (8)	0.0425 (2)
Br3	-0.07491 (13)	0.72472 (3)	0.08867 (13)	0.0708 (3)
Br4	0.23829 (11)	0.63158 (3)	0.65207 (8)	0.0425 (2)
C1	0.3092 (8)	0.3676 (2)	0.4757 (7)	0.0254 (14)
C2	0.3114 (8)	0.4041 (2)	0.5911 (7)	0.0223 (13)
C3	0.3828 (8)	0.3896 (2)	0.7481 (7)	0.0279 (15)
C4	0.4534 (9)	0.3450 (2)	0.7876 (8)	0.0338 (16)
H4	0.5017	0.3377	0.8918	0.041*
C5	0.4518 (10)	0.3107 (2)	0.6699 (9)	0.0357 (17)
C6	0.3789 (9)	0.3217 (2)	0.5193 (8)	0.0327 (16)
H6	0.3744	0.2985	0.4421	0.039*
C7	0.2336 (9)	0.3744 (3)	0.3118 (8)	0.0352 (17)
H7	0.2289	0.3474	0.2489	0.042*
C8	0.1252 (9)	0.5882 (2)	0.1838 (8)	0.0304 (15)
C9	0.1785 (8)	0.5864 (2)	0.3508 (7)	0.0247 (14)
C10	0.1614 (9)	0.6300 (2)	0.4297 (8)	0.0300 (15)
C11	0.0909 (9)	0.6704 (3)	0.3535 (9)	0.0399 (18)
H11	0.0802	0.6979	0.4103	0.048*
C12	0.0361 (10)	0.6701 (3)	0.1931 (9)	0.0393 (18)
C13	0.0548 (9)	0.6299 (3)	0.1089 (8)	0.0385 (18)
H13	0.0199	0.6303	0.0000	0.046*
C14	0.1414 (9)	0.5481 (3)	0.0829 (8)	0.0318 (16)
H14	0.1159	0.5544	-0.0244	0.038*
O1	0.1748 (6)	0.41087 (16)	0.2442 (5)	0.0305 (10)
O2	0.2526 (6)	0.44684 (15)	0.5594 (5)	0.0303 (10)
O3	0.1838 (6)	0.50740 (17)	0.1193 (5)	0.0325 (11)
O4	0.2395 (6)	0.54800 (15)	0.4281 (5)	0.0291 (10)
O1W	0.4842 (6)	0.47247 (17)	0.3266 (5)	0.0328 (11)
H1WB	0.5531	0.4541	0.3888	0.049*
H1WA	0.5434	0.4977	0.3190	0.049*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

O2W H2WA H2WB Zn1	-0.0665 (6) -0.1464 -0.1136 0.21512 (10)	0.48299 (16 0.5033 0.4639 0.47942 (3)	6)	0.3156 (: 0.2793 0.3719 0.34528	(8)	0.029 0.044 0.044 0.024	1 (10) * * 39 (19)	
Atomic displacen	nent parameters ((A^2)						
	U^{11}	<i>U</i> ²²	U^{33}		U^{12}		U^{13}	U^{23}
Br1	0.0589 (5)	0.0313 (4)	0.0632 (5)	0.0112 (4)		0.0130 (4)	0.0182 (4)
Br2	0.0587 (5)	0.0441 (5)	0.0252 (4	4)	-0.0025 (4)		0.0089 (3)	-0.0051 (3)
Br3	0.0697 (7)	0.0406 (5)	0.0988 (8	8)	0.0178 (5)		0.0080 (6)	0.0331 (5)
Br4	0.0599 (5)	0.0325 (4)	0.0371 (4	4)	-0.0081 (4)		0.0142 (4)	-0.0102 (3)
C1	0.025 (3)	0.024 (3)	0.029 (3))	0.002 (3)		0.009 (3)	-0.002 (3)
C2	0.023 (3)	0.018 (3)	0.029 (3))	-0.002 (2)		0.012 (3)	-0.001 (3)
C3	0.025 (4)	0.032 (4)	0.027 (3))	-0.003 (3)		0.006 (3)	0.002 (3)
C4	0.035 (4)	0.037 (4)	0.028 (4))	-0.002 (3)		0.004 (3)	0.008 (3)
C5	0.041 (4)	0.021 (4)	0.045 (4))	0.005 (3)		0.008 (3)	0.012 (3)
C6	0.040 (4)	0.021 (4)	0.037 (4))	0.004 (3)		0.008 (3)	0.001 (3)
C7	0.042 (4)	0.029 (4)	0.033 (4))	0.003 (3)		0.005 (3)	-0.010 (3)
C8	0.029 (4)	0.028 (4)	0.031 (4))	-0.005 (3)		-0.002 (3)	0.003 (3)
C9	0.019 (3)	0.023 (3)	0.032 (4))	-0.002 (3)		0.003 (3)	0.004 (3)
C10	0.029 (4)	0.028 (4)	0.035 (4))	-0.001 (3)		0.011 (3)	-0.002 (3)
C11	0.035 (4)	0.029 (4)	0.058 (5))	0.000 (3)		0.016 (4)	0.000 (4)
C12	0.037 (4)	0.027 (4)	0.057 (5))	0.007 (3)		0.014 (4)	0.016 (4)
C13	0.033 (4)	0.041 (5)	0.036 (4))	-0.003 (3)		-0.006 (3)	0.014 (3)
C14	0.034 (4)	0.038 (4)	0.020 (3))	0.000 (3)		-0.002 (3)	0.001 (3)
O1	0.033 (3)	0.029 (3)	0.025 (2))	0.001 (2)		-0.004 (2)	-0.002 (2)
O2	0.044 (3)	0.023 (2)	0.024 (2))	0.005 (2)		0.007 (2)	-0.0003 (18)
O3	0.038 (3)	0.035 (3)	0.023 (2))	0.003 (2)		0.005 (2)	-0.001 (2)
O4	0.033 (3)	0.022 (2)	0.029 (2))	0.0020 (19)		-0.003 (2)	0.0015 (19)
O1W	0.025 (2)	0.036 (3)	0.035 (3))	0.000(2)		0.000 (2)	-0.001 (2)
O2W	0.023 (2)	0.032 (3)	0.032 (2))	0.000(2)		0.0040 (19)	0.000 (2)
Zn1	0.0266 (4)	0.0229 (4)	0.0223 (4	4)	0.0022 (3)		0.0015 (3)	-0.0017 (3)

Geometric parameters (Å, °)

Br1—C5	1.880 (6)	С9—О4	1.308 (7)
Br2—C3	1.899 (6)	C9—C10	1.420 (9)
Br3—C12	1.896 (7)	C10-C11	1.370 (10)
Br4—C10	1.904 (7)	C11—C12	1.372 (10)
C1—C6	1.418 (9)	C11—H11	0.93
C1—C2	1.431 (8)	C12—C13	1.369 (11)
C1—C7	1.439 (9)	С13—Н13	0.93
C2—O2	1.292 (7)	C14—O3	1.214 (8)
C2—C3	1.424 (8)	C14—H14	0.93
C3—C4	1.383 (9)	O1—Zn1	2.114 (4)
C4—C5	1.401 (10)	O2—Zn1	2.040 (4)
C4—H4	0.93	O3—Zn1	2.081 (4)
C5—C6	1.353 (9)	O4—Zn1	2.052 (4)

С6—Н6	0.93	O1W—Zn1	2.105 (4)
C7—O1	1.223 (8)	O1W—H1WB	0.85
С7—Н7	0.93	O1W—H1WA	0.85
C8—C13	1.394 (9)	O2W—Zn1	2.121 (4)
C8—C9	1.426 (9)	O2W—H2WA	0.85
C8—C14	1.447 (9)	O2W—H2WB	0.85
C6—C1—C2	120.9 (6)	C13—C12—Br3	119.8 (6)
C6—C1—C7	116.2 (6)	C11—C12—Br3	120.0 (6)
C2—C1—C7	122.9 (6)	C12—C13—C8	121.0 (7)
O2—C2—C3	121.4 (5)	C12—C13—H13	119.5
O2—C2—C1	124.2 (6)	C8—C13—H13	119.5
C3—C2—C1	114.4 (6)	O3—C14—C8	128.8 (6)
C4—C3—C2	123.7 (6)	O3—C14—H14	115.6
C4—C3—Br2	118.4 (5)	C8—C14—H14	115.6
C2—C3—Br2	117.9 (5)	C7—O1—Zn1	123.7 (4)
C3—C4—C5	119.7 (6)	C2—O2—Zn1	126.3 (4)
С3—С4—Н4	120.2	C14—O3—Zn1	125.2 (4)
С5—С4—Н4	120.2	C9—O4—Zn1	126.6 (4)
C6—C5—C4	119.4 (6)	Zn1—O1W—H1WB	120.1
C6—C5—Br1	120.9 (5)	Zn1—O1W—H1WA	118.3
C4—C5—Br1	119.7 (5)	H1WB—O1W—H1WA	106.3
C5—C6—C1	121.9 (6)	Zn1—O2W—H2WA	135.8
С5—С6—Н6	119.1	Zn1—O2W—H2WB	115.8
С1—С6—Н6	119.1	H2WA—O2W—H2WB	106.3
O1—C7—C1	128.6 (6)	O2—Zn1—O4	96.64 (17)
O1—C7—H7	115.7	O2—Zn1—O3	175.22 (18)
С1—С7—Н7	115.7	O4—Zn1—O3	87.75 (18)
C13—C8—C9	120.8 (6)	O2—Zn1—O1W	93.58 (19)
C13—C8—C14	116.3 (6)	O4—Zn1—O1W	95.20 (18)
C9—C8—C14	123.0 (6)	O3—Zn1—O1W	84.10 (18)
O4—C9—C10	121.4 (6)	O2—Zn1—O1	87.25 (17)
O4—C9—C8	123.6 (6)	O4—Zn1—O1	175.34 (17)
C10—C9—C8	115.0 (6)	O3—Zn1—O1	88.45 (18)
С11—С10—С9	123.1 (6)	O1W—Zn1—O1	87.10 (17)
C11—C10—Br4	118.9 (5)	O2—Zn1—O2W	95.20 (18)
C9—C10—Br4	118.0 (5)	O4—Zn1—O2W	91.08 (17)
C10-C11-C12	119.9 (7)	O3—Zn1—O2W	86.59 (18)
C10-C11-H11	120.0	O1W—Zn1—O2W	168.55 (17)
C12—C11—H11	120.0	O1—Zn1—O2W	85.99 (17)
C13—C12—C11	120.1 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O1W—H1WB···O4 ⁱ	0.85	2.01	2.751 (6)	144
O1W—H1WA···O2 ⁱ	0.85	2.31	3.065 (6)	148
O2W—H2WA···O2 ⁱⁱ	0.85	2.24	2.773 (6)	121
O2W—H2WB···O4 ⁱⁱ	0.85	2.17	2.932 (6)	149

supplementary materials

O1W—H1WA…Br2 ⁱ	0.85	2.89	3.596 (5)	141
O2W—H2WA…Br2 ⁱⁱ	0.85	2.81	3.637 (5)	166
O2W—H2WB···Br4 ⁱⁱ	0.85	2.84	3.509 (5)	137
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $-x$, $-y+1$, $-z+1$.				

Fig. 1

